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Abstract—Different people respond to feedback and guidance 
in different ways, and their preferences may change based on 
their mood, tiredness, etc. We present a robot exercise coach 
that provides verbal and nonverbal feedback in two different 
styles: firm and encouraging. We collect a dataset of people 
experiencing both feedback styles and show that the style that 
someone performs best with may not be the one they have the 
best subjective experience with or be the one that they state 
they prefer. To account for this, we present a contextual bandit 
approach that enables the robot coach to learn the best style to 
use over time to improve the human’s performance, and show 
that this approach performs quite well in expectation on the real 
human data. 

Index Terms—personalization; adaptation; exercise; robot; 
coaching; feedback 

I. INTRODUCTION 

One of the key objectives of human-robot interaction is 
to develop robots that can seamlessly integrate into human 
social environments. As robots are increasingly being deployed 
across various domains, transitioning from controlled factory 
settings to more intricate environments like healthcare and ed-
ucation, it becomes essential for them to be contextually-aware 
and tailor their interactions by using verbal and nonverbal 
modalities. A failure to personalize interactions and instead 
rely on a one-size-fits-all strategy may result in missed oppor-
tunities to enhance individual performance and experiences 
based on preferences and context. 

A crucial aspect of this process involves enabling robots to 
understand individuals’ preferences for feedback. People can 
respond differently to feedback, and these preferences can shift 
depending on factors like mood, personality, fatigue, etc. 

In the domain of exercise, guidance and feedback play a 
crucial role, as a personalized coach can offer corrections to 
help ensure that exercises are performed correctly, minimizing 
the risk of injury and maximizing the exercise effectiveness. 
A coach can also provide motivation and encouragement 
to improve consistency and make the exercise experience 
more enjoyable. People may have different feedback style 
preferences for exercise; some individuals may favor a firmer 
approach, while others may prefer more encouragement. Ex-
ercise feedback preferences can be impacted by a variety of 
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factors as shown in [1]. In this paper, we explore the following 
research question: 

• How can an exercise coach robot determine which feed-
back style to use when in real-time? 

To explore this question, we use an existing robot exercise 
coach framework that can analyze the human’s exercising 
in real-time to provide specific feedback (e.g., corrections, 
encouragement). The coach can provide that feedback in 
different styles, specifically firm and encouraging, and our 
prior work has shown that people have different performances 
and preferences with these two styles [2]. We then present a 
contextual bandit approach for the robot to learn the appro-
priate feedback style to use for an individual. This approach 
incorporates a context at each time-step, predicts the best 
feedback style to use, uses that feedback style to react in 
a multi-modal way, and then observes the reward (human’s 
performance) after the feedback to train the bandit. 

To explore this approach with real human data, we created 
a dataset of people exercising with the two feedback styles. 
We first obtained data from the previous work where younger 
participants interacted with the robot [2]. To create a more 
diverse dataset, we conducted a new user study with older 
adults interacting with the robot, as we believe that they may 
respond differently to the two feedback styles. 

On this combined dataset, we show that a robot cannot 
simply ask for a style preference or ask Likert-style ques-
tions about subjective experience with the styles to determine 
the best style to use to optimize for performance. We also 
show that older adults do respond to these styles differently, 
justifying our data collection with this population to create a 
more age-diverse dataset. Lastly, we use our contextual bandit 
approach with the human data in this dataset and show that 
our adaptive approach results in a better expected performance 
than simply choosing one style for each exercise round. 

II. RELATED WORK 

A. Human Feedback 

In human-human interactions, people use both verbal and 
nonverbal feedback and have different task performances and 
experiences. When speech was accompanied by gestures, peo-
ple interpreted it differently as the nonverbal behavior helped 
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to disambiguate the verbal feedback [3]. This motivates our use 
of both verbal and nonverbal feedback for the robot exercise 
coach. In the exercise domain, nonverbal behavior was shown 
to be crucial in coach-athlete communication, which motivates 
the use of nonverbal robot behavior in our work [4]. 

Humans also can react differently to feedback given in 
different ways, motivating our use of multiple feedback styles. 
Researchers found that students had different preferences for 
how teachers should give different types of feedback [5]. Re-
searchers also found that people generally prefer process-based 
criticism over personal criticism [6]. Choosing the correct 
feedback style can even have an impact on task performance. 
A group that received error feedback outperformed groups that 
received other types of feedback in learning how to vertical 
jump [7]. We attempt to leverage this effect in our work by 
determining how to choose the correct style of feedback for 
each person. In the exercise domain specifically, feedback 
preferences can be impacted by a variety of factors as shown 
in [1], including physical health status, educational level. 

B. Robot Feedback Improving Performance 

In this work, we explore how robot feedback can positively 
impact performance. Our prior work indicates that nonverbal 
robot behavior improves task performance in a sorting game 
task [8]. Robot nonverbal behavior was shown in improve 
task performance for difficult collaborative tasks [9]. Robot 
gestures reduced perceived workload and improved task per-
formance, making difficult tasks feel easier [10]. In the domain 
of exercise, a robot coach was shown to reduce mistakes using 
a combination of verbal and nonverbal modalities [11]. Addi-
tionally, a robot’s gaze improved the human’s performance in 
a cooperative task [12]. 

C. Robot Feedback Improving Human Subjective Experience 

Although the focus in our work is how to design robot 
feedback to improve performance, a robot coach’s feedback 
can also have an impact on the human’s subjective experience. 
Researchers developed a model that expressed different levels 
of competence and warmth with the NAO robot, changing its 
hand and body movements [13]. A robot programmed to have 
a positive mood increased participants’ valence and arousal 
[14]. Additionally, the combination of verbal and nonverbal 
feedback was found to improve the human’s experience [15]. 

Our work shows how changing the way the robot gives 
feedback can change the human’s performance and their 
experience. Our prior work showed that people do respond 
differently to two different feedback styles (firm and encour-
aging) on the robot exercise coach [2]. 

D. Personalization 

Researchers have explored how to personalize robot behav-
ior based on many different factors, including personality. Par-
ticipants in a study varied their preferred distance to the robot 
based on various personality traits, such as proactivity [16]. 
Researchers adapted a robot’s verbal and nonverbal behavior 
based on the human’s extroversion [17]. A robot personalized 

to the human maintained a higher level of engagement and mo-
tivation during the exercise session [18]. Additionally, students 
that interacted with a robot with personalized feedback showed 
a significant increase in emotional response [19]. These studies 
illustrate the benefit of personalization, but generally do not 
adapt the robot’s behavior based on real-time feedback. Our 
work attempts to improve the human’s performance using real-
time information from the human to learn the best styles to 
use as they exercise. 

III. METHODS 

We utilized Quori [20] as the exercise coach, where the 
human performed exercises in front of the robot (Figure 1) 
and the robot provided verbal and nonverbal feedback that 
could include corrections and encouragement. For the robot 
to appropriately provide feedback, it first needed to analyze 
the human’s exercise in real-time and then provide feedback 
based on its exercise evaluation in the two different feedback 
styles: firm and encouraging. 

Fig. 1. Human exercising with the robot exercise coach 

A. Exercise Evaluation and Feedback 

Because we planned to combine the datasets, we utilized 
the same exercise evaluation and feedback methodology as 
our prior work with younger participants [2]. A summary of 
the approach is included in this section for completeness. For 
the robot to provide relevant, real-time feedback, it needs to 
analyze the human’s exercises. We chose two exercises, bicep 
curls and lateral raises, because they are upper body exercises 
(allowing participants to sit while exercising and expanding 
the potential participant pool to those with limited lower body 
mobility). The utility of these exercises was also validated by 
two domain experts1 . 

1) Segmentation: The first step to providing feedback is to 
determine where one repetition starts and another ends. We 
process the images from the camera mounted on the robot 
using the Mediapipe library2 to get 3D joint positions, and 

1Ayotoni Aroyo, ACSM-CPT (Exercise Physiologist and Physical Activity 
Lead at Emory University’s Cognitive Empowerment Program) and Gustavo 
J Almeida, PT, Ph.D. (UT Health San Antonio) 

2https://pypi.org/project/mediapipe/ 
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TABLE I 
EXAMPLES OF VERBAL AND NONVERBAL FEEDBACK TO DIFFERENT SITUATIONS FOR THE THREE FEEDBACK STYLES THE NEUTRAL STYLE DOES NOT 

HAVE VERBAL FEEDBACK WHILE THE HUMAN IS EXERCISING. 

Firm Encouraging 
Evaluation Verbal Nonverbal Verbal Nonverbal 

Last 2 reps slow Try to speed up 
50% sad, lean 

forward slightly 
Nice job, can you speed up a 

little on the next few? 

50% sad, lean 
forward slightly 
less than firm 

Last 2 reps low 
range of motion 

Focus on getting a full 
range of motion in 

your elbows 

50% sad, lean 
forward slightly 

You are doing great, try to get 
a full range of motion in 

your elbows. 

50% sad, lean 
forward slightly 
less than firm 

Last 2 reps good 
speed, previous 2 

were slow 

Nice speed, 
keep going 

60% happy, small 
upward arms, 

small backward torso 
Nice job, great speed! 

90% happy, large 
upward arms, 

large backward torso 

we then compute angles of interest for our exercises: right/left 
shoulder and right/left elbow. Looking at the angles, we can 
determine conditions for when a rep ends. For example, when 
the gradient jumps and the value of the elbow angle changes 
sign, this could indicate that the upper arm is moving back up 
to start a new bicep curl. Figure 2 illustrates the segmentation 
applied to an example set of bicep curl angles. 

Fig. 2. One of the bicep curl angles segmented into reps with the alternating 
solid blue and dashed green colors indicating where the segmentation method 
found the end of one rep and the beginning of another 

2) Comparison: The second step is to compare what the 
person has done to previously recorded demonstrations of 
the exercises, allowing us to determine how well a rep was 
performed. We record both properly done demonstrations and 
examples of common mistakes for each exercise (such as not 
raising your arm to 90◦ on a lateral raise). We then compare 
the rep to the recorded demonstrations using the Dynamic 
Time Warping [21] distance to determine which demonstration 
is closest. If the rep is ‘close enough’ to one of the recorded 
demonstrations, we assign the rep the evaluation of that 
demonstration (e.g. good form, low range of motion). If the rep 
does not match closely enough to any of the demonstrations, 
then the evaluation is bad form. This evaluation is then used 
to provide multi-modal feedback to the person. 

3) Multi-modal Feedback: Once the robot evaluates the 
quality of each rep, it reacts in a multi-modal way. One mode 
is to react verbally, providing congratulations of good form, 
suggestions to correct bad form, and positive reinforcement 
after correcting bad form. The robot, in general, reacts after it 

sees a pattern (e.g. three good form rep in a row), and our prior 
work explores how the frequency of feedback affects how it 
is viewed [22]. We used two feedback styles explored in our 
prior work that were developed in conjunction with domain 
experts: firm and encouraging [2]. The firm style has minimal 
encouragement, while the encouraging style includes positive 
statements to soften the blow of corrective feedback. 

Fig. 3. Examples of robot’s happy and sad facial expressions at different 
intensities (left) and its degrees of freedom for body movements (right) 

In addition to the verbal mode, the robot also reacts non-
verbally (Figure 3). In positive situations, the robot smiles 
and performs a happy body movement, while it slightly 
frowns and performs a sad body movement to accompany 
corrections. When using the encouraging style, the robot’s 
positive reactions are more intense and its negative reactions 
are less intense, compared to the firm style. Our prior work 
explored which movement patterns on Quori were perceived as 
displaying different emotions [23], and we use the movements 
perceived as happy and sad for Quori’s nonverbal reactions. 
Nonverbal feedback occurs in conjunction with the verbal 
feedback (e.g., a corrective verbal phrase paired with a nega-
tive nonverbal reaction) to augment the feedback signal of the 
verbal feedback. The robot also reacts nonverbally 50% of the 
time based on the rep immediately previous when there is no 
verbal utterance by the robot, which previous work found was 
perceived positively [22]. In general, people preferred a higher 
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frequency of nonverbal feedback as nonverbal signals can be 
less overwhelming and require less mental energy to process, 
and the nonverbal robot reactions can enhance the human’s 
subjective experience during the interaction. 

Table I includes multiple examples of how the robot reacts 
in different situations in a multi-modal way and with the 
different feedback styles. 

B. Adaptive Feedback Model 

We introduce an adaptive feedback model using a contextual 
bandit for a robot to learn in real-time which feedback style 
to use when. The feedback style someone might prefer may 
be dependent on a variety of factors, and we include fatigue 
estimation in this work as an important contextual feature, 
since someone’s preference for encouragement may vary based 
on how tired they are. 

In this approach (Figure 4), the robot first observes a context 
from the human. For our work, we assume this context c is a 
fatigue estimate, where the robot estimates whether the human 
has low, moderate, or high fatigue. Next, the robot queries its 
policy Π for the best action (feedback style) given the current 
context. The chosen action a is then used to generate multi-
model feedback in the chosen style. The human observes this 
feedback and performs the next rep of the exercise with either 
good or bad form. The robot can observe this reward (0 or 1) 
and trains on the combination of context, action, and reward to 
improve the policy. The goal of this approach is for the robot 
to choose the action that maximizes the human performance 
given the context. 

Fig. 4. The robot observes the context c from the human and chooses an 
action a. The human responds to the robot’s action, and their performance r 
forms the reward for the robot to train policy Π. 

When translating this approach to the robot exercise coach, 
we note that the robot does not provide verbal feedback at 
every repetition (only reacting when a pattern is observed, such 
as 3 good reps in a row). Reacting verbally every rep would be 
very overwhelming for the human, and they would not be able 
to process the feedback at such a high frequency. In practice, 
we assume that any reps following a verbal utterance with 
a particular style have the same style (e.g., an encouraging 
phrase has an effect for the few reps after that phrase is 
uttered), and the style of the robot can change when the 
conditions have been met for the next verbal utterance. This 
will allow the robot to adapt to the human’s performances 
and will allow the human to react to the robot’s feedback. In 

the simulation formulation, however, we assume the robot can 
change its feedback style every repetition. 

We developed a human simulation and fatigue model to 
determine whether the contextual bandit can learn the feedback 
style with which the simulated human performs best. 

First, we created a model of fatigue as the human is 
exercising; this is the context the robot will observe. We 
simulate an exercise session where the human performs a 
series of sets of 10 reps, where the fatigue is low for the 
first 5 reps, moderate for the next 3 reps, and high for the last 
2 reps. This approximates a human whose fatigue increases as 
they perform each set and resets back to low fatigue after a 
rest period following each set. 

Next we determine the feedback styles, or actions, the robot 
can choose between. We chose five different feedback styles: 
very firm, firm, neutral, encouraging, and very encouraging. 
We have thus far implemented two of these styles (firm and 
encouraging) on the actual robot, but we wanted to explore 
a larger range of styles in simulation to see if the bandit 
approach can still learn the best style in a more complicated 
scenario. 

The bandit learns a policy on each of these feedback styles 
as a function of the context observed, and it treats each of 
the styles as independent and unrelated. The styles, however, 
are not truly independent, as very firm is a more extreme 
version of firm and very encouraging a more extreme version 
of encouraging. We did attempt to update the policy of related 
actions after viewing the reward, similar to the pseudo reward 
approach presented in [24]. For example, a reward after very 
firm feedback may tell us something about the firm action, but 
the pseudo rewards did not significantly improve our results. 
Therefore, we treat each of the styles as independent. 

Lastly, we chose to construct a reward that is simply based 
on performance: 0 for bad form and 1 for good form. Our 
simulated human model performs the next rep correctly based 
on a probability p(ak, f), where ak is the feedback style 
chosen by the robot after each rep. We construct the following 
equation to compute this probability: 

p(ak, f) = p(ak)(1 − γfe(a r )) (1) 

• p(ak, f) is the probability the human performs the next 
rep correctly after viewing feedback style ak with fatigue 
f 

• p(ak) is the probability the human performs the next rep 
correctly with no fatigue after seeing feedback style ak 

• γ is 0 if there is no fatigue dependence in performance, 
and 1 if there is a large fatigue dependence 

• f is 0, 0.3, or 0.6 for low, medium, and high fatigue, 
respectively 

• e(ak) is an action-dependent fatigue factor (e.g., whether 
high fatigue reduces performance with a specific feedback 
style) 

For example, if a human performs very well with the very 
firm style, then perhaps p(a0) = 0.8, meaning without fatigue, 
they perform 80% of their reps with good form after seeing 
very firm feedback. If they have a high fatigue dependence 
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(γ = 1), then the final term in the equation plays a large 
factor in their true performance with very firm feedback. If 
their fatigue was high (f = 0.6) but they had no action 
dependent fatigue factor (e(a0) = 1), their performance 
p(a0, f) with high fatigue would become 0.8(1−0.4) = 0.48, 
which is a reduction to 48% of their reps correct with 
good form after seeing very firm feedback with high fatigue. 
However, if they had an action dependent fatigue factor of 
(e(a0) = 0.5), which means their preference for very firm 
feedback increases with higher fatigue, their new performance 
p(a0, f) = 0.8(1 − (0.4 × 0.5)) = 0.64. This means that since 
their preference for very firm feedback increases with fatigue, 
their drop in performance with high fatigue is less severe (64% 
instead of 48%). 

C. Simulation Results 

We ran this simulation in three different scenarios. Exper-
iment 1 explores no fatigue dependence, where the human’s 
performance does not change with fatigue (γ = 0, p(ar, f) = 
p(ar)). Experiment 2 explores basic fatigue dependence, 
where the human’s performance reduces with fatigue, but the 
bandit’s actions do not change with fatigue (γ = 0.5, e = 
[1, 1, 1, 1, 1]). Experiment 3 is the most complicated scenario 
of complex fatigue dependence, where the action the ban-
dit should choose changes with the different fatigue levels 
(γ = 0.5, e = [4, 2, 1,−0.25,−2]). This will demonstrate 
the efficacy of this approach in learning the optimal feedback 
style in increasingly complicated scenarios. We implement the 
contextual bandit model using the bayesianbandits3 package. 

For all these experiments, let us consider someone 
who performs best with very firm feedback and performs 
worst with very encouraging feedback. Specifically, ar = 
[0.8, 0.6, 0.5, 0.4, 0.3], where the human performs 80% of their 
reps correctly without taking fatigue into account after viewing 
very firm feedback, 60% with firm, etc. 

1) Experiment 1 (No Fatigue Dependence): We first ran an 
experiment over 20 sets of 10 reps each where the human’s 
performance is not fatigue dependent (γ = 0, p(ar, f) = 
p(ar)). The bandit’s optimal action for all reps is the very 
firm action. Figure 5 shows that the bandit chose the very 
firm action 77% of the time over the 20 sets, and learned by 
the later sets to choose very firm for all the reps. 

2) Experiment 2 (Basic Fatigue Dependence): We next 
ran an experiment over 20 sets of 10 reps each where the 
human’s performance reduces with fatigue, but the bandit’s 
actions do not change with fatigue (γ = 0.5, e = [1, 1, 1, 1, 1]). 
The human’s fatigue does reduce their performance, but it 
reduces it equally across all actions and the optimal action 
for the bandit is still very firm across all fatigue levels. In this 
experiment, the bandit chose the very firm action 62% of the 
time time over the 20 sets, which is less than the no fatigue 
case, but still very frequent. 

3) Experiment 3 (Complex Fatigue Dependence): We lastly 
ran an experiment over 20 sets of 10 reps each where the 

3https://bayesianbandits.readthedocs.io/en/latest/index.html 

Fig. 5. Experiment 1: Simulation results with no human fatigue dependence in 
performance. The human’s performance is the same across all fatigue levels, 
and the optimal action for the bandit is very firm across all reps. 

action the bandit should choose changes with the different 
fatigue levels (γ = 0.5, e = [4, 2, 1,−0.25,−2]), with the 
probabilities bounded between [0.05, 0.95]. The bandit should 
optimally choose very firm for low fatigue, is relatively in-
different between all styles for moderate fatigue (probabilities 
range from 39% - 43%), and should choose encouraging or 
very encouraging for high fatigue. This extreme case of fatigue 
dependence illustrates how the style the robot should choose 
could completely change as the fatigue changes. 

Figure 6 shows that the bandit shows that the bandit is 
able still learn the optimal action in the complex fatigue 
scenario. It learns to choose very firm for low fatigue and 
very encouraging for high fatigue. Additionally, if the bandit 
did not see the context, it would perform much worse (average 
reward of 0.45 in addition to choosing the incorrect action for 
moderate and low fatigue compared to 0.64 when taking the 
context into account). This validates our use of a contextual 
bandit, rather than a simple bandit. 

Fig. 6. Experiment 3: Simulation results with complex fatigue dependence 
in performance. The bandit should choose very firm for low fatigue, is 
relatively indifferent between all styles for moderate fatigue, and should 
choose encouraging or very encouraging for high fatigue. 

In these experiments, we show that the contextual bandit can 
accurately learn the optimal feedback style even with complex 
fatigue dependence. 

IV. USER STUDY DATASET 

A. Study Design 

In our previous work conducted in a laboratory setting [2], 
19 participants performed two rounds of exercise of 4 sets 
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each (2 bicep curls and 2 lateral raises). After each round, the 
participant completed a short survey. The survey had questions 
taken from the Godspeed Questionnaire [25] to measure their 
perception of the robot in terms of animacy, likability, and 
perceived intelligence. Most of these 19 participants were 
young adults (µ = 28.5, σ = 14.7, with one participant ≥ 65). 

We implemented the same study procedures with our older 
adult study: two counterbalanced rounds of exercise, one with 
each feedback style, and surveys with the same questions. 
In this study, we took Quori to an assisted living facility 
(Vincentian Schenley Gardens in Pittsburgh, PA) and ran the 
study protocol with 8 older adults there. We also added two 
more participants in a laboratory setting, resulting in a total of 
10 participants (µ = 77.4, σ = 10.6) with 9 participants ≥ 65. 

Combining the two sets of data, we have a total of 29 
participants, 10 of which are 65 or older. We aimed to create a 
more age-diverse dataset as most traditional recruiting methods 
skew younger in age and exercise has value across all age 
ranges. Even with a specific effort to add older adults, we still 
have an unbalanced dataset, but it is much more balanced than 
the original dataset (34% older adults rather than 5%). 

There are two major differences between these two studies. 
The first is that in the older adult study, we asked the 
participants before beginning the exercise rounds whether they 
preferred a firm or encouraging feedback style. As we will 
show in Section IV-B, the style that participants state before 
the interaction and the style that they prefer (rate higher on the 
surveys) do not always match the style they perform best with. 
This highlights the need for an adaptive approach to learn in 
an online way which style each person performs best with. 

The second difference is that in the older adult study, we 
estimated fatigue using a heart rate monitor (Polar Verity 
Sense), calculating the heart rate reserve using the following 
equation4: 

HRR = 
HR − RHR 

MaxHR − RHR 
(2) 

• HRR is the heart rate reserve, where we set less than 
0.2 to be low fatigue, 0.2-0.4 to be moderate fatigue, and 
0.4 and above to be high fatigue after pilot testing 

• HR is the participant’s current heart rate in beats per 
minute 

• RHR is the participant’s resting heart rate, computed as 
an average during the introduction to the exercise session 

• MaxHR is the participant’s estimated maximum heart 
rate, computed using (220 − Age)5 

which allows us to determine how high an individual’s heart 
rate is, proportional to their resting and max heart rates. [?] 
explores the relationship between physical fatigue and heart 
rate metrics, including heart rate reserve. 

We do not have fatigue information for the 19 participants 
from the first study, so after observing the data from the 
older adult study, we estimated that participants have low 

4https://my.clevelandclinic.org/health/articles/24649-heart-rate-reserve 
5https://www.heart.org/en/healthy-living/fitness/fitness-basics/target-heart-

rates 

fatigue for the first 90% of each set and moderate fatigue 
for the remainder of each set. There are, of course, individual 
variations that we observed, but this fatigue estimate was used 
in the contextual bandit approach in Section V. 

B. Study Results 

We first assigned a performance group to each of the 29 
participants: those who performed better with the encouraging 
style, those who performed better with the firm style, and 
those who performed about the same with the two styles. 
To do this, we computed the difference d in performance 
(percentage of good form reps) between the two styles for 
each participant (encouraging - firm). We then calculated the 
mean and standard deviation of those differences. To compute 
a 95% confidence interval, we used the formula µ ± (t × σ), 
where t is the critical value from the t-distribution and σ is 
the standard error (standard deviation divided by 

√ 
n). 

We also computed a subjective measure for each participant 
from their survey responses after experiencing each feedback 
style. We averaged the 1-7 Likert scores that each participant 
completed for each robot style (lively, interactive, responsive, 
friendly, kind, pleasant, competent, intelligent). We subtracted 
the firm score from the encouraging one to get a single 
value where < 0 indicates a preference for firm and > 0 
a preference for encouraging. We then performed the same 
grouping procedure as for the performance scores to determine 
which participants prefer the firm style, prefer the encouraging 
style, or have no style preference. 

Table II includes the number of participants with each 
combination of performance and preference group. We can 
see that 76% of the participants lie off the diagonal, where 
the diagonal indicates agreement between the style someone 
prefers and the style they perform best with. Discounting the 
groups with no preference or performance difference, 70% of 
the remaining participants had complete disagreement in group 
assignment (e.g., preferring the firm style but performing best 
with the encouraging style). 

TABLE II 
PERFORMANCE AND PREFERENCE GROUPS FOR THE 29 PARTICIPANTS. 

THE DIAGONAL INDICATES AGREEMENT BETWEEN THE STYLE 

PREFERENCE AND THE STYLE THE PARTICIPANT PERFORMS BEST WITH. 

Prefers 
Firm 

Prefers 
Encouraging 

No Style 
Preference 

Performs Best 
with Firm 1 2 6 

Performs Best 
with Encouraging 5 2 2 

Performs Equally 
with Both 3 4 4 

For the 10 participants in the older adult study, we addi-
tionally have the participants’ stated style to compare to the 
style they perform best with. Table III shows the performance 
groups separated out by what the participants stated as their 
style preference. We can see that 3/10 participants stated the 

Session 6A: Assistive Robots and Human Wellbeing HRI 2025, March 4-6, 2025, Melbourne, Australia

663

https://5https://www.heart.org/en/healthy-living/fitness/fitness-basics/target-heart
https://4https://my.clevelandclinic.org/health/articles/24649-heart-rate-reserve


style that they performed best with, but 4/10 of the participants 
stated the opposite style to the one they performed best with. 
This further supports our claim that simply asking people their 
preference does not always help the robot choose the feedback 
style to optimize performance. Some potential reasons for the 
discrepancy include limited exercise experience, unfamiliarity 
with feedback styles, or selecting responses based on perceived 
rather than actual preferences. 

TABLE III 
PERFORMANCE AND STATED STYLE PREFERENCE FOR 10 PARTICIPANTS 

IN THE OLDER ADULT STUDY 

Stated 
Firm 

Stated 
Encouraging 

Performs Best with Firm 2 4 

Performs Best with Encouraging 0 1 

Performs Equally with Both 0 3 

We can also compared how older adults performed with 
different feedback styles compared to those less than 65 years 
of age. We can see in Table IV that the distribution of 
performance groups is statistically different (p < 0.05 after 
running an ANOVA) between adults (19) and older adults (10). 
In particular, a greater percentage of older adults seemed to 
perform better with the firm feedback style, demonstrating the 
importance of collecting data from multiple age groups. 

TABLE IV 
FEEDBACK STYLE THAT PARTICIPANTS PERFORMED BEST WITH, SPLIT BY 

AGE GROUP. 

Adult 
(<65) 

Older Adult 
(>= 65) 

Performs Best with Firm 15.8% 60% 

Performs Best with Encouraging 36.8% 20% 

Performs Equally with Both 47.4% 20% 

V. ADAPTIVE FEEDBACK ON HUMAN DATA 

Section III-C explored the use of a contextual bandit ap-
proach using a complex simulated human model, but we now 
want to test the efficacy of the approach on our dataset with 
real human data. Using the data from the 29 participants 
described in Section IV, we set the context in those data to 
be the estimated fatigue (low, moderate, or high). The model 
has the choice of two feedback styles the humans experienced: 
firm or encouraging. In our studies, participants experienced 
one round of exercise with the firm style and one with the 
encouraging style, and we additionally have their performance 
on each rep throughout the exercise session. 

The goal of this test on real data is to see the actions 
the contextual bandit would have chosen given the observed 
context, and then estimate the reward it would have received 
based on the participants’ performance. We can then compare 
that estimated reward to the participants’ actual performance 
when they experienced one round of each feedback style. 

Let us assume we have Participant X who performed two 
rounds of exercise, one with each style. They performed 40 
repetitions with the firm style first, followed by 35 repetitions 
with the encouraging style. Note that the participants did not 
perform the same number of reps with each style since rounds 
are time-based. They performed 80% of reps with the firm 
robot correctly and 70% with the encouraging robot correctly. 

We then start with the first repetition that they performed, 
which was with the firm style, and let us assume the first 
repetition had good form. We give the model the context, 
which for the first repetition was low fatigue. We query the 
model as to the action it thought it should take, given the 
context. Let us assume the model chooses the encouraging 
style. We now train the model on what the human actually 
experienced (on the true data, not the action the model chose); 
specifically, the (context, action, reward) of (low fatigue, firm, 
good performance). We then continue this process throughout 
the rest of the repetitions. For each repetition, we compute 
the expected reward that the robot would have received had 
it chosen the style outputted by the bandit. In this example, 
we set the expected reward received by the bandit for this 
rep as 0.7 since the human is expected to perform 70% of 
the repetitions correctly with the encouraging style (the action 
chosen by the bandit). Note we train the bandit on the true 
data (firm) and compute the bandit’s expected reward based 
on the bandit’s chosen action (encouraging). 

We computed two different metrics throughout this ap-
proach. The first is the actual reward which is the total number 
of good performance reps the human actually performed 
through both rounds. The second is the expected bandit reward 
which is the sum of the expected rewards over all the rounds. 
We hypothesize that the expected bandit reward will be higher 
than the actual reward, since the model should be optimizing 
for the human’s best performance. 

Model Results 

Figure 7 illustrates an example of this approach with one 
participant who performed much better with the encouraging 
style. The bandit quickly adapted to this performance differ-
ence and chose the encouraging style very frequently, which 
is optimal for this participant. 

We calculated the difference in the expected bandit reward 
and the actual reward for each of the 29 participants (Figure 
9). Since participants performed one round of exercise with 
each style, we can assume that we are comparing the expected 
reward of the bandit to a robot choosing each style for roughly 
half the time. For most participants (19/29) the contextual 
bandit had a higher expected reward. For the participant in 
Figure 7, the bandit had an expected reward that was 25% 
higher than the human’s actual performance, which illustrates 
how an adaptive approach can learn the style someone per-
forms best with and use that style more frequently to optimize 
for the human performance. Additionally, if we compare the 
bandit’s performance with no context (simple bandit) and 
fatigue as context (contextual bandit), we observe that the 
contextual bandit performed better than the simple bandit for 
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Fig. 7. Example of model results for one participant. This participant performs much better with the encouraging style (37.5% with firm, 85.7% with 
encouraging), which the model quickly learns by choosing the encouraging style 96.7% of the time. 

Fig. 8. Example of model results for one participant, who performed approximately equally with the two styles (52.6% with firm and 68.4% with encouraging). 
The model does not learn their preferences as quickly since their performance with the two styles is quite close. 

Fig. 9. Expected bandit reward - actual reward for all 29 participants. The 
contextual bandit outperforms the true data for most participants. 

19 of the 29 participants. For the remaining 10 participants, 
the contextual bandit performed slightly worse or about the 
same, with the maximum difference being 2.5%. This further 
illustrates the need for informative context for the bandit to 
accurately choose the performance-optimizing feedback style. 

For 10 participants, the contextual bandit performed slightly 
worse than the true data, but with the worst performance only 
7% worse than the true data. Examining these participants to 
investigate the reasons for the bandit not performing as well, 
we can see that this occurs when the human’s performance 
with the two styles is very close. This means that the expected 
reward the bandit received at each trial is approximately the 
same, and that combined with a limited number of iterations 
over which to learn (e.g., 38 reps instead of the 200 we 
performed in simulation) caused the bandit to not learn the 
best style to use for the human fast enough. For example, for 
Participant 22 (Figure 8), their performance was 53% with 
the firm style and 68% with the encouraging style. At each 
rep, the bandit was receiving 0.53 or 0.68, and for the first 20 
reps, it kept switching between the two styles. For the last 12 

reps, however, it began to choose the encouraging style more 
frequently, which is the optimal choice for this participant. 

VI. CONCLUSION 

We presented a contextual bandit approach which we test in 
complex performance difference situations to illustrate how the 
model can learn which feedback style to use when. We also 
presented a robot exercise coach that evaluates the human’s 
exercises in real-time and provides multi-modal feedback in 
two different styles: firm and encouraging. 

Next, we introduced a user study to collect data on how 
older adults responded to different feedback styles and com-
bined with previous data collected to form a more age-
diverse data set. We demonstrated that the style that someone 
performs best with is not always the style that they say they 
prefer and is also not always the style that they rate the 
highest after experiencing. We then showed how our con-
textual bandit approach for a robot exercise coach optimizes 
performance by learning which style someone performs best 
with in an online fashion, and our results indicated that this 
approach performs quite well in expectation. 

In our future work, we will conduct a user study with 
both younger and older adults to test our contextual bandit 
approach against a static, nonadaptive baseline to verify that 
a coach that adapts its style to improve performance does 
indeed outperform a static baseline. This result will further 
cement the need for robots to personalize their behavior and 
have multiple ways of responding to the same stimuli, as 
humans are not a monolith and have different preferences and 
performances with different styles of feedback. We also want 
to further understand how human subjective experience will 
be impacted by this approach of optimizing for performance, 
since our dataset indicates that there can be trade-off between 
preference and performance. 
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